Getting to know U: the asymptotic distribution of a single U-statistic

After my last grand slam title, U-, V-, and Dupree statistics I was really feeling the pressure to keep my title game strong. Thank you to my wonderful friend Steve Lee for suggesting this beautiful title.

Overview

A statistical functional is any real-valued function of a distribution function F such that

    \[ \theta = T(F) \]

and represents characteristics of the distribution F and include the mean, variance, and quantiles.

Often times F is unknown but is assumed to belong to a broad class of distribution functions \mathcal{F} subject only to mild restrictions such as continuity or existence of specific moments.

A random sample X_1, …, X_n \stackrel{i.i.d}{\sim} F can be used to construct the empirical cumulative distribution function (ECDF) \hat{F}_n,

    \[ \hat{F}_{n}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(X_i \leq x) \]

which assigns mass \frac{1}{n} to each X_i.

\hat{F}_{n} is a valid, discrete CDF which can be substituted for F to obtain \hat{\theta} = T(\hat{F}_n). These estimators are referred to as plug-in estimators for obvious reasons.

For more details on statistical functionals and plug-in estimators, you can check out my blog post Plug-in estimators of statistical functionals!

Many statistical functionals take the form of an expectation of a real-valued function \phi with respect to F such that for a \leq n,

    \[ \theta = T(F) = \mathbb{E}_{F}~ \phi(X_1, …, X_a) .\]

When \phi(x_1, …, x_a) is a function symmetric in its arguments such that, for e.g. \phi(x_1, x_2) = \phi(x_2, x_1), it is referred to as a symmetric kernel of degree a. If \phi is not symmetric, a symmetric equivalent \phi^{*} can always be found,

    \[\phi^{*}(x_1, …, x_a) = \frac{1}{a!} \sum_{\pi ~\in~ \Pi} \phi(x_{\pi(1)}, …, x_{\pi(a)})\]

where \Pi represents the set of all permutations of the indices 1, …, a.

A statistical functional \theta = T(F) belongs to a special family of expectation functionals when:

  1. T(F) = \mathbb{E}_F ~\phi(X_1, …, X_a), and
  2. \phi(X_1, …, X_a) is a symmetric kernel of degree a.

Plug-in estimators of expectation functionals are referred to as V-statistics and can be expressed explicitly as,

    \[V_n = \frac{1}{n^a} \sum_{i_1 = 1}^{n} … \sum_{i_a = 1}^{n} \phi(X_{i_1}, …, X_{i_a}) \]

so that V_n is the average of \phi evaluated at all possible permutations of size a from X_1, …, X_n. Since the X_i can appear more than once within each summand, V_n is generally biased.

By restricting the summands to distinct indices only an unbiased estimator known as a U-statistic arises. In fact, when the family of distributions \mathcal{F} is large enough, it can be shown that a U-statistic can always be constructed for expectation functionals.

Since \phi is symmetric, we can require that 1 \leq i_1 < ... < i_a \leq n, resulting in {n \choose a} combinations of the subscripts 1, ..., a. The U-statistic is then the average of \phi evaluated at all {n \choose a} distinct combinations of X_1, ..., X_n,

    \[U_n = \frac{1}{{n \choose a}} \mathop{\sum … \sum} \limits_{1 \leq i_1 < ... < i_a \leq n} \phi(X_{i_1}, ..., X_{i_a}).\]

While i_j \neq i_k within each summand now, each X_i still appears in multiple summands, suggesting that U_n is the sum of correlated terms. As a result, the central limit theorem cannot be relied upon to determine the limiting distribution of U_n.

For more details on expectation functionals and their estimators, you can check out my blog post U-, V-, and Dupree statistics!

This blog post provides a walk-through derivation of the limiting, or asymptotic, distribution of a single U-statistic U_n.

Continue reading Getting to know U: the asymptotic distribution of a single U-statistic