U-, V-, and Dupree statistics

To start, I apologize for this blog’s title but I couldn’t resist referencing to the Owen Wilson classic You, Me, and Dupree ā€“ wow! The other gold-plated candidate was U-statistics and You. Please, please, hold your applause.


My previous blog post defined statistical functionals as any real-valued function of an unknown CDF, T(F), and explained how plug-in estimators could be constructed by substituting the empirical cumulative distribution function (ECDF) \hat{F}_{n} for the unknown CDF F. Plug-in estimators of the mean and variance were provided and used to demonstrate plug-in estimators’ potential to be biased.

    \[ \hat{\mu} = \mathbb{E}_{\hat{F}_n}[X] = \sum_{i=1}^{n} X_i P(X = X_i) = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X}_{n} \]

    \[ \hat{\sigma}^{2} = \mathbb{E}_{\hat{F}_{n}}[(X- \mathbb{E}_{\hat{F}_n}[X])^2] = \mathbb{E}_{\hat{F}_n}[(X - \bar{X}_{n})^2] = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_{n})^2. \]

Statistical functionals that meet the following two criteria represent a special family of functionals known as expectation functionals:

1) T(F) is the expectation of a function g with respect to the distribution function F; and

    \[ T(F) = \mathbb{E}_{F} ~g(X)\]

2) the function g(\cdot) takes the form of a symmetric kernel.

Expectation functionals encompass many common parameters and are well-behaved. Plug-in estimators of expectation functionals, named V-statistics after von Mises, can be obtained but may be biased. It is, however, always possible to construct an unbiased estimator of expectation functionals regardless of the underlying distribution function F. These estimators are named U-statistics, with the ā€œUā€ standing for unbiased.

This blog post provides 1) the definitions of symmetric kernels and expectation functionals; 2) an overview of plug-in estimators of expectation functionals or V-statistics; 3) an overview of unbiased estimators for expectation functionals or U-statistics.

Continue reading U-, V-, and Dupree statistics