Kernel Density Estimation


It is important to have an understanding of some of the more traditional approaches to function estimation and classification before delving into the trendier topics of neural networks and decision trees. Many of these methods build on an understanding of each other and thus to truly be a MACHINE LEARNING MASTER, we’ve got to pay our dues. We will therefore start with the slightly less sexy topic of kernel density estimation.

Let X be a random variable with a continuous distribution function (CDF) F(x) = Pr(X \leq x) and probability density function (PDF)

    \[f(x) = \frac{d}{dx} F(x)\]

Our goal is to estimate f(x) from a random sample \lbrace X_1, …, X_n \rbrace. Estimation of f(x) has a number of applications including construction of the popular Naive Bayes classifier,

    \[ \hat{Pr}(C = c | X = x_0) = \frac{\hat{\pi}_c \hat{f}_{c}(x_0)}{\sum_{k=1}^{C} \hat{\pi}_{k} \hat{f}_{k}(x_0)} \]

Continue reading Kernel Density Estimation